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The Expectation of Success Using a Monte Carlo 
Factoring Method Some Statistics on Quadratic 

Class Numbers 

By Duncan A. Buell 

Abstract. A method has been proposed for factoring an integer N by using the structure of the 
class groups of quadratic fields of radicand - kN for various small multipliers k. We discuss 
the method and an implementation of the method, and various theoretical questions which 
have an impact on the practical use of the method in factoring. Some of the theoretical 
questions relate to the nature of class numbers and class groups; we present extensive 
statistical results on the class numbers and class groups of imaginary quadratic fields. 

1. The Method. We deal with binary quadratic forms (a, b, c) of discriminant 
b-2- 4ac = - N, N > 0. The equivalence classes of forms of a fixed discriminant 
under transformations of the modular group r form a finite abelian group, the class 
group. The order of the class group is the class number h = h(N). 

The crucial fact, used either implicitly or explicitly in several factoring methods, is 
that for odd N the classes of order 2 in the class group, called ambiguous classes, are 
precisely the classes containing forms (P, p, (p2 + N)/4P) for the various divisors 
P of N. Thus finding ambiguous forms leads to finding factors. (For even N there 
are also ambiguous classes represented by forms (P, 0, N/P) in addition to the 
classes mentioned above.) 

Shanks used the explicit class group structure in his factoring method CLASNO 
[SHAN]. He estimated h with the product formula, then "fiddled" in the class group 
until the exact value for h was found. He then found an ambiguous form by finding 
a formf = (a, b, c) for which j /2 was not the identity. 

The new method, which we shall henceforth refer to as the CPS method 
((Classgroup/CLASNO)-(Pollard P-1)-(Synthesis)), is somewhat less direct [SCHN]. 
We let M be the product of all "small" odd primes p (i) raised to "large" exponents 
a(i). We then compute fM = g for forms f until we find an f for which fM is not the 
identity. Writing h = 2mh', it is certainly true that if h' I M, then g2 is ambigu- 
ous. 

In short, we exponentiate forms to huge odd powers that we hope contain all the 
odd factors of the class number. If this comes to pass, then we can get ambiguous 
forms and then factors of N. 

Actually, as with many factoring methods, there are several deeper levels of 
subtlety. First, it is not really necessary that h' I M. The class groups, being finite 
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abelian groups, are direct products of their p-Sylow subgroups. If h" is the maximal 
order of any form of odd order, then it is only necessary that h" I M in order for an 
ambiguous form to be generated by this method. We shall return to this question 
later. 

Second, it is not entirely necessary that h" I M. A second stage of the algorithm 
has been suggested in [SCHN] which is based on the gamble that M/h" is a prime. 
Rather than continue exponentiating for long periods, one uses a CLASNO-like test 
to find out whether the form obtained from the previous exponentiation is of order 
P for larger primes P. More on this later. 

Third, it has been suggested that several discriminants - kN be used, for various 
small k. Since it is not possible to predict exactly the nature of h (-kN), one stands 
a much better chance of factoring N by trying several different discriminants in 
hopes that (at least) one has the necessary characteristics to permit an easy factoring 
of N. 

2. The Implementation. The CPS method has been implemented on the IBM 
3033N computer at the System Network Computing Center at Louisiana State 
University. The very-low-level routines of the multiprecise arithmetic have been 
coded in assembly language. Higher routines have usually first been programmed in 
PL/1 to allow working programs to be written rapidly, and then translated into 
IBM VS FORTRAN (the IBM version of FORTRAN 77) for greater speed. It is to 
be emphasized that the CPS code itself has not been extensively optimized. Since 
this is a new method, it has been necessary to first find out if it is even possible to 
consider it as practical. The routines for class group calculation are for the most part 
general-purpose routines and have not been tailored for this use. 

Even considering the fact that faster programs could easily be developed, the 
method does seem slow. Testing has been done primarily by generating pseudo- 
primes of 12 to 15 digits atid attempting to factor the products of two such 
pseudoprimes. One attempt was made, and abandoned, to factor a 47-digit com- 
posite number from the Cunningham table [BRIL]. The method seems at this point 
so slow that it would not be possible to attack 50 or 60 digit integers with it. Code 
optimization could realistically improve the performance by a factor of only three to 
five, which would not be sufficient. 

The routines for composition and reduction of forms came informally from Daniel 
Shanks via A. 0. L. Atkin, neither of whom are responsible for any possible 
degradation in performance introduced by the author. 

Some remarks about languages are in order. Three distinct versions of multiprecise 
arithmetic have been implemented. All have used assembly-language routines for 
low-level arithmetic, and all have been compiled with the complete optimizing 
features of the compilers. One in PL/I and one in VS FORTRAN have treated 
multiprecise integers as fixed-length arrays with a pointer to the first nonzero digit. 
A third, in VS FORTRAN, has used variable-length arrays with an indicator of the 
length of the array. In heavy arithmetic computation, the PL/1 version ran about 
25% faster than the fixed-length FORTRAN, but somewhat slower than the varia- 
ble-length FORTRAN. The lesson for future programming efforts seems to be that 
PL/1 is actually much more efficient in array handling than even fully optimized 
FORTRAN. In all cases of these computations, it seemed that arithmetic on 50-digit 



A MONTE CARLO FACTORING METHOD 315 

integers could be performed almost 40% faster by working base 230 = 1073741824 
rather than base 109. A substantial portion of computing time, it seems, is spent 
simply in separating doubleword products into component singleword digits in some 
number base. 

3. Theoretical Appeal of the CPS Method. The theoretical appeal of the CPS 
method comes from the following observations [POMEa]. We let L(N) = 

exp((log N log log N)1/2). Most factoring algorithms currently in use have a running 
time measured as (L(N))x+?(l). The new method is the first, if certain assumptions 
are made about the nature of class numbers and class groups, for which the value of 
x is as small as 1 [POMEb, POMEc]. These assumptions are essentially that numbers 
which are class numbers have the same divisibility properties as all numbers of 
comparable size. Recall that, in order to have this method factor N, it is necessary 
that h (N) have only "smallish" prime factors. The presence of only one prime factor 
of h not included in the exponent M will cause the method not to work in the first 
stage. 

4. Implementation Problems. As evidenced by the problems in this first version, 
substantial work remains if the CPS method is to become practical. We describe 
some possibilities. 

The class group algorithms currently implemented are not only algorithms for 
general use, they are originally designed for single precision calculation. In the actual 
implementation, it is entirely probable that some speed could be gained by saving 
steps in the code. A greater speedup could be obtained by an improved set of 
algorithms that would take into account the fact that these are multiprecise compu- 
tations. 

Further speedup would be possible if an average-case look at continued expo- 
nentiation in the class group revealed ways to predict arithmetic results. By analogy 
with the GCD algorithm (which is incidentally called extremely often in class group 
calculation), one can predict, based on a theorem of Levy, that 66% of the quotients 
are 1, 2, or 3 [KNUT]. Using this, one can avoid division in most instances and use 
only one to three subtractions. It is conceivable that analogous results hold in class 
groups. 

A final comment concerns reduction. Traditional routines call for reduction after 
every composition. This is normally done to keep the coefficients within predictable 
magnitudes. Reduction is certainly not necessary every time, however. Only when 
the added cost of calculations with longer arguments exceeds the cost of a reduction 
should that reduction be made. 

5. Theoretical Questions. Class Number Characteristics. Implementation questions 
aside, it is clear that the nature of class numbers and of class groups plays a key role 
in the question of whether or not this method will be useful. The following results 
are compiled from a computation of all class numbers for even and odd discrimi- 
nants from 0 to -16 million, and of all class groups for discriminants from 0 to - 4 
million. Although there are potential flaws in extrapolating even from this point-the 
class numbers are still smaller than 8400 and the class groups thus have little 
opportunity to be very complex-it is nonetheless true that this statistical evidence 
from about 4.8 million class numbers and one million class groups can be of use in 
pointing the way for further study. 
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TABLE 1 

Largest and smallest class numbers and ? of forms per genus 
ODD DISCRIMIrANTS 

R U SCN LCN SFPG LFPG 
0 1 1868 1 1829 
1 76 2724 6 2669 
2 98 3464 8 3311 
3 118 3918 9 3881 
4 138 4498 8 4465 
5 156 4913 10 4913 
6 162 5180 8 5167 
7 185 5686 10 5595 
8 198 6088 9 6027 
9 202 6372 12 6343 

10 211 6767 13 6767 
11 242 7206 13 7165 
12 233 7457 12 7457 
13 253 7719 12 7719 
14 256 8064 12 7847 
15 267 3303 14 3303 

EVEN DISCRII4INANTS 
RUN SCI LCN SFPG LFPG 

0 1 1344 1 522 
1 104 1464 5 704 
2 152 180) 7 879 
3 176 2382 8 1041 
4 213 2352 9 1176 
5 222 2580 9 1279 
6 260 2870 10 1435 
7 270 3J40 11 1512 
8 282 3286 10 1643 
9 304 3392 10 1696 

10 323 3600 12 1800 
11 352 3730 14 1842 
12 376 3896 13 1908 
13 378 4132 12 1975 
14 338 4344 12 2049 
15 392 4392 14 2190 

TABLE 2 

Percentages of noncyclic p-Sylow subgroups for small p 

EVEN DISCS ODD DISCS 
RUN 2 3 5 2 3 5 

0 2.1 0.8 0.1 1.5 0.8 0.1 
1 2.8 1.0 0.1 2.0 1.0 0.1 
2 3.0 1.1 0.1 2.4 1.1 0.1 
3 3.1 1.1 0.1 2.3 1.2 0.2 
4 3.2 1.2 0.1 2.4 1.2 0.1 
5 3.3 1.2 0.2 2.5 1.2 0.2 
6 3.4 1.2 0.2 2.5 1.2 0.2 
7 3.5 1.2 0.1 2.6 1.3 0.1 
8 3.4 1.1 0.1 2.5 1.3 0.2 
9 3.6 1.2 0.2 2.7 1.3 0.2 

10 3.4 1.3 0.2 2.8 1.4 0.2 
11 3.4 1.3 0.2 2.6 1.3 0.2 
12 3.7 1.3 0.2 2.8 1.4 0.2 
13 3.8 1.2 0.2 2.7 1.3 0.2 
14 3.7 1.2 0.2 2.8 1.4 0.2 
15 3.5 1.3 0.1 2.8 1.3 0.2 
16 3.9 1.2 0.2 2.8 1.4 0.2 
17 3.8 1.4 0.2 2.8 1.3 0.2 
18 3.8 1.3 0.2 2.9 1.3 0.2 
19 3.8 1.3 0.2 2.9 1.4 0.2 

ADDITIONAL NONCYCLIC SYLOW SUBGROUPS FOR PRIMES > 5: 
ODD DISCS: 371/310575 = .04 % 
EVEN DISCS: 169/405276 = .04 . 
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TABLE 3 

Percentages of FPG divisible by small integers 

for odd discriminants of quadratic number fields 

50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 
2 3 4 5 6 7 8 9 10 11 12 13 14 

0 41.9 40.2 21.9 23.0 16.6 15.8 11.0 13.8 9.4 9.5 8.5 7.9 6.4 
1 43.7 41.1 23.0 23.4 17.7 15.9 11.8 14.3 10.1 9.6 9.3 8.2 6.9 
2 44.2 41.3 23.4 23.3 18.2 16.0 12.0 14.6 10.2 9.7 9.6 8.0 6.9 
3 44.6 41.4 23.6 23.2 18.3 16.1 12.0 14.5 10.3 9.6 9.6 8.2 7.2 
4 44.6 41.6 23.6 23.7 18.4 16.0 12.0 14.6 10.5 9.7 9.7 8.1 7.1 
5 45.0 41.6 23.9 23.6 18.6 16.0 12.2 14.6 10.6 9.7 9.8 8.3 7.2 
6 45.0 41.8 24.0 23.7 18.7 16.2 12.4 14.7 10.6 9.8 10.0 8.3 7.2 
7 45.3 41.9- 24.1 23.7 18.8 16.2 12.3 14.8 10.7 9.7 10.1 8.1 7.3 
8 45.4 41.9 24.2 23.4 19.0 16.2 12.4 14.8 10.6 9.8 10.2 8.1 7.3 
9 45.3 41.9 24.1 23.6 18.9 16.3 12.4 14.9 10.7 9.7 10.1 8.1 7.3 

10 45.4 41.9 24.3 23.4 19.0 16.2 12.5 14.8 10.5 9.9 10.1 8.3 7.3 
11 45.7 42.0 24.3 23.6 19.1 16.2 12.4 14.9 10.7 9.8 10.1 8.1 7.3 
12 45.6 42.1 24.4 23.7 19.1 16.2 12.6 14.9 10.7 9.8 10.2 8.1 7.4 
13 45.7 42.0 24.4 23.8 19.3 16.3 12.6 14.9 10.8 9.8 10.2 8.2 7.4 
14 45.7 42.0 24.4 23.6 19.2 16.3 12.5 14.9 19.7 9.8 10.2 8.2 7.4 
15 45.9 42.1 24.5 23.7 19.2 16.3 12.6 14.9 10.8 9.9 10.2 8.1 7.5 

6.7 6.3 5.9 5.6 5.3 5.0 4.8 4.5 4.3 4.2 4.0 3.8 3.7 
15 16 17 18 19 20 21 22 23 24 25 26 27 

0 9.0 5.4 5.9 5.5 5.2 4.7 6.2 3.7 4.2 4.2 4.5 3.0 4.5 
1 9.4 5.8 6.0 6.1 5.4 5.3 6.4 4.1 4.3 4.8 4.6 3.4 4.7 
2 9.6 6.0 6.1 6.4 5.4 5.3 6.5 4.1 4.4 4.8 4.8 3.5 4.9 
3 9.5 6.0 6.1 6.4 5.3 5.4 6.6 4.2 4.4 4.8 4.7 3.6 4.8 
4 9.8 6.0 6.0 6.4 5.4 5.5 6.6 4.3 4.4 4.9 4.8 3.5 4.9 
5 9.8 6.2 6.1 6.5 5.4 5.6 6.6 4.3 4.4 5.0 4.8 3.7 4.9 
6 9.8 6.3 6.0 6.5 5.5 5.6 6.8 4.3 4.5 5.1 4.7 3.6 4.9 
7 9.9 6.2 6.1 6.5 5.4 5.7 6.8 4.3 4.3 5.1 4.8 3.6 5.0 
8 9.9 6.2 6.0 6.7 5.5 5.6 6.8 4.4 4.4 5.2 4.7 3.7 5.0 
9 10.0 6.2 6.2 6.6 5.4 5.6 6.8 4.4 4.4 5.1 4.8 3.7 5.1 

10 9.7 6.3 6.0 6.7 5.4 5.6 6.7 4.5 4.4 5.1 4.7 3.7 5.0 
11 9.9 6.2 6.2 6.7 5.5 5.7 6.8 4.5 4.4 5.1 4.8 3.7 4.9 
12 10.0 6.3 6.2 6.7 5.5 5.7 6.7 4.5 4.4 5.2 4.8 3.7 5.0 
13 10.1 6.3 6.1 6.8 5.4 5.7 6.7 4.4 4.5 5.2 4.9 3.7 4.9 
14 10.0 6.3 6.0 6.8 5.4 5.7 6.7 4.5 4.5 5.2 4.8 3.7 5.0 
15 10.0 6.3 6.0 6.7 5.4 5.7 6.8 4.5 4.5 5.3 4.9 3.7 5.0 

TABLE 4 

Percentages of FPG divisible by small integers for odd 

discriminants of quadratic number fields with 2 genera 

50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 
2 3 4 5 6 7 8 9 10 11 12 13 14 

O 49.6 40.7 24.7 23.2 20.1 16.0 12.4 14.2 11.5 9.7 9.9 8.0 7.8 
1 49.8 41.3 24.8 23.7 20.4 16.2 12.5 14.5 11.8 9.7 10.2 8.3 7.9 
2 50.0 41.5 24.8 23.1 20.7 16.2 12.6 14.7 11.4 9.7 10.2 8.2 8.0 
3 49.8 41.8 24.8 23.2 20.9 16.5 12.3 14.7 11.5 9.8 10.3 8.1 8.2 
4 49.7 41.8 24.6 23.5 20.7 16.0 12.2 14.8 11.6 9.8 10.3 8.3 7.9 
5 50.0 42.1 25.1 23.8 20.9 16.3 12.4 14.8 11.9 9.7 13.5 8.5 8.1 
6 49.6 42.3 24.9 23.7 20.9 16.2 12.6 14.8 11.7 10.0 10.5 8.4 8.0 
7 49.9 42.1 25.0 23.6 20.9 16.4 12.3 15.1 11.7 9.8 10.5 8.2 8.1 
8 50.0 42.1 24.8 23.4 21.1 16.2 12.4 14.8 11.6 10.0 10.4 8.1 8.1 
9 49.8 42.1 24.8 23.6 21.0 16.4 12.4 15.0 11.8 9.7 10.5 8.3 8.2 

10 49.6 42.0 24.8 23.4 21.0 16.2 12.4 14.9 11.5 9.9 10.4 8.5 7.9 
11 50.0 42.2 24.7 23.5 21.1 16.4 12.3 15.0 11.7 10.0 10.4 8.2 8.2 
12 49.8 42.3 24.9 23.9 21.0 16.2 12.4 15.0 12.0 9.8 10.4 8.2 8.1 
13 49.8 42.7 25.0 24.0 21.4 16.5 12.4 15.1 12.0 9.8 10.7 8.4 8.2 
14 49.7 42.3 24.7 23.6 20.9 16.3 12.3 15.1 11.8 9.9 10.3 8.2 8.1 
15 50.1 42.3 25.2 23.9 21.2 16.5 12.7 15.0 12.0 9.9 10.6 8.0 8.3 
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TABLE 4 (continued) 

6.7 6.3 5.9 5.6 5.3 5.0 4.8 4.5 4.3 4.2 4.0 3.8 3.7 
15 16 17 18 19 20 21 22 23 24 25 26 27 

0 9.3 6.1 6.1 6.9 5.3 5.6 6.4 4.6 4.3 4.8 4.6 3.9 4.7 
1 9.7 6.1 6.1 7.2 5.6 5.8 6.6 4.9 4.5 5.1 4.9 4.0 4.8 
2 9.8 6.2 6.2 7.3 5.6 5.7 6.7 4.8 4.5 5.1 4.8 4.1 5.0 
3 9.6 6.1 6.2 7.4 5.4 5.7 6.9 4.8 4.5 5.1 4.7 4.0 4.9 
4 9.9 6.1 5.9 7.3 5.5 5.8 6.7 4.9 4.5 5.1 4.9 4.0 5.0 
5 10.0 6.2 6.3 7.4 5.3 6.1 6.9 4.9 4.5 5.2 4.9 4.2 5.1 
6 9.9 6.2 6.1 7.4 5.6 5.9 6.9 4.9 4.6 5.3 4.7 4.1 4.9 
7 10.0 6.1 6.1 7.4 5.6 5.9 7.0 4.9 4.3 5.2 4.9 4.0 5.2 
8 9.9 6.2 6.2 7.4 5.5 5.8 6.9 5.0 4.4 5.2 4.7 4.1 5.1 
9 10.0 6.2 6.3 7.4 5.4 5.9 6.8 4.8 4.5 5.2 4.9 4.2 5.2 

10 9.9 6.2 6.0 7.4 5.3 5.8 6.7 5.0 4.4 5.2 4.8 4.2 5.1 
11 9.9 6.1 6.3 7.5 5.5 5.7 6.9 5.0 4.3 5.1 4.8 4.1 5.0 
12 10.2 6.2 6.2 7.4 5.6 5.9 6.9 5.0 4.4 5.1 4.9 4.0 5.0 
13 10.3 6.3 6.2 7.6 5.5 6.0 6.9 4.8 4.6 5.3 4.9 4.2 5.1 
14 10.1 6.2 6.0 7.5 5.4 5.8 6.8 4.9 4.6 5.1 4.9 4.0 5.1 
15 10.2 6.3 6.0 7.4 5.3 5.9 6.8 4.9 4.6 5.3 4.9 4.0 5.0 

TABLE 5 
Percentages of FPG divisible by small integers 

for even discriminants of quadratic number fields 

50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 
2 3 4 5 6 7 8 9 10 11 12 13 14 

0 53.7 39.7 28.0 22.9 21.3 15.5 14.0 13.4 12.1 9.0 10.8 7.5 8.0 
1 54.7 40.9 28.9 23.3 22.3 16.0 14.7 14.3 12.6 9.6 11.7 7.7 8.5 
2 55.1 40.8 29.2 23.2 22.6 15.8 14.9 14.2 12.7 9.5 11.9 8.0 8.5 
3 55.3 41.3 29.3 23.3 22.8 16.1 15.1 14.5 12.8 9.8 12.0 8.1 8.7 
4 55.4 41.5 29.4 23.5 23.0 16.1 15.2 14.6 12.8 9.7 12.3 8.1 8.8 
5 55.5 41.3 29.7 23.6 22.8 16.2 15.2 14.6 13.1 9.6 12.1 8.0 8.8 
6 55.8 41.4 29.7 23.4 23.0 16.4 15.2 14.5 13.0 9.6 12.2 8.2 9.0 
7 55.8 41.4 29.9 24.0 23.1 16.1 15.6 14.7 13.4 9.3 12.3 8.1 8.9 
8 55.9 41.8 29.8 23.6 23.3 16.0 15.2 14.7 13.0 9.7 12.4 8.1 8.8 
9 56.0 41.7 29.7 24.1 23.2 15.7 15.4 14.5 13.5 9.8 12.2 7.9 8.7 

10 56.0 41.9 29.9 23.4 23.5 16.0 15.5 14.8 13.2 9.6 12.5 8.1 8.8 
11 56.0 41.6 30.1 23.9 23.4 15.9 15.5 14.6 13.3 9.7 12.6 8.0 8.8 
12 56.1 41.9 29.9 23.5 23.5 16.2 15.3 14.7 13.2 9.6 12.5 8.3 9.1 
13 56.1 41.8 30.0 23.4 23.5 16.1 15.5 14.9 13.1 9.7 12.5 8.1 9.1 
14 56.1 41.6 30.3 23.5 23.4 16.4 15.5 15.0 13.1 9.6 12.6 8.2 9.2 
15 56.1 41.8 30.1 23.5 23.3 16.4 15.4 15.1 13.1 9.7 12.4 8.1 9.2 

6.7 6.3 5.9 5.6 5.3 5.0 4.8 4.5 4.3 4.2 4.0 3.8 3.7 
15 16 17 18 19 20 21 22 23 24 25 26 27 

0 8.8 6.6 5.4 6.9 4.7 6.0 5.7 4.4 3.7 5.1 3.9 3.6 4.0 
1 9.4 7.4 5.8 7.7 5.0 6.5 6.3 5.1 4.2 5.9 4.4 4.0 4.7 
2 9.3 7.4 5.9 7.8 5.2 6.6 6.4 5.2 4.1 6.0 4.6 4.2 4.6 
3 9.6 7.5 6.0 7.9 5.1 6.7 6.5 5.3 4.2 6.1 4.4 4.3 4.7 
4 9.7 7.4 5.9 8.0 5.3 6.7 6.5 5.3 4.3 6.3 4.7 4.4 4.7 
5 9.7 7.5 6.0 7.9 5.2 7.0 6.6 5.2 4.4 6.0 4.6 4.3 4.9 
6 9.5 7.7 6.1 7.9 5.3 6.9 6.7 5.2 4.4 6.2 4.6 4.4 4.7 
7 9.8 7.7 5.9 8.2 5.3 7.1 6.6 5.4 4.3 6.4 4.7 4.3 4.8 
8 9.8 7.5 6.0 8.1 5.4 6.8 6.6 5.4 4.2 6.2 4.7 4.5 4.8 
9 10.2 7.7 6.1 8.0 5.3 7.1 6.5 5.5 4.4 6.2 4.9 4.3 4.9 

10 9.7 7.8 6.0 8.2 5.4 7.0 6.6 5.4 4.3 6.4 4.7 4.5 5.0 
11 9.9 7.9 6.1 8.2 5.3 7.1 6.6 5.4 4.3 6.5 4.8 4.4 4.9 
12 9.9 7.7 6.0 8.2 5.3 7.0 6.7 5.3 4.6 6.3 4.7 4.6 4.9 
13 9.7 7.8 6.1 8.4 5.3 7.0 6.6 5.5 4.3 6.4 4.7 4.5 4.9 
14 9.8 7.8 6.1 8.4 5.3 7.1 6.7 5.3 4.3 6.4 4.7 4.5 5.0 
15 9.8 7.7 6.0 8.4 5.4 6.9 6.7 5.4 4.4 6.3 4.8 4.4 5.0 
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TABLE 6 
Percentages of FPG divisible by small integers for even 
discriminants of quadratic number fields with 4 genera 

50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 9.1 8.3 7.7 7.1 
2 3 4 5 6 7 8 9 10 11 12 13 14 

0 53.1 39.8 28.2 22.8 21.2 15.6 14.3 13.6 11.9 9.3 10.9 7.5 8.2 
1 53.6 41.3 28.8 23.5 22.4 16.2 14.8 14.6 12.5 9.7 12.1 7.9 8.5 
2 54.2 41.4 29.5 23.3 22.7 16.0 15.2 14.6 12.5 9.5 12.3 8.1 8.5 
3 54.0 41.4 29.2 23.4 22.4 16.0 15.3 14.5 12.5 10.1 12.1 8.4 8.5 
4 54.1 41.6 29.1 23.8 22.6 16.3 15.1 14.5 12.8 9.9 12.3 8.2 8.7 
5 54.1 41.7 29.4 23.6 22.5 16.3 15.1 15.0 12.6 9.6 12.1 8.1 8.8 
6 54.4 41.7 29.6 23.4 22.6 16.8 15.4 14.8 12.7 9.6 12.3 8.1 9.0 
7 54.4 41.7 29.5 23.9 22.7 16.2 15.5 14.9 12.9 9.9 12.1 8.3 8.7 
8 54.3 42.1 29.1 23.7 22.8 16.1 15.0 15.0 12.5 9.7 12.0 8.2 8.6 
9 54.4 41.6 29.4 24.1 22.6 15.8 15.3 14.6 13.1 10.0 12.1 8.2 8.4 

10 54.5 42.3 29.5 23.4 23.0 15.9 15.5 15.1 12.8 9.7 12.4 8.2 8.6 
11 54.1 42.1 29.3 24.0 23.0 16.0 15.1 14.9 13.0 9.7 12.5 8.2 8.7 
12 54.5 42.1 29.6 23.6 23.0 16.1 15.4 14.9 12.9 9.7 12.5 8.5 8.7 
13 54.4 41.7 29.5 23.6 22.8 16.2 15.5 15.1 12.9 9.9 12.3 8.2 8.9 
14 54.5 42.2 29.9 23.4 23.1 16.7 15.6 15.4 12.9 9.8 12.7 8.3 9.0 
15 54.4 42.1 29.6 23.7 22.9 16.3 15.1 15.7 12.8 9.8 12.4 8.0 9.0 

6.7 6.3 5.9 5.6 5.3 5.0 4.8 4.5 4.3 4.2 4.0 3.8 3.7 
15 16 17 18 19 20 21 22 23 24 25 26 27 

0 8.8 6.9 5.6 6.9 4.8 6.1 5.9 4.6 3.8 5.3 4.1 3.7 4.1 
1 9.6 7.6 6.0 7.8 5.1 6.6 6.5 5.0 4.4 6.1 4.6 4.1 4.8 
2 9.5 7.6 6.1 8.0 5.4 6.7 6.6 5.1 4.2 6.2 4.8 4.3 4.7 
3 9.7 7.6 5.9 7.9 5.3 6.7 6.6 5.4 4.4 6.2 4.4 4.4 4.6 
4 10.0 7.5 5.9 7.9 5.4 6.8 6.7 5.4 4.4 6.2 4.8 4.4 4.7 
5 9.9 7.5 6.0 8.0 5.3 6.8 6.7 5.1 4.6 6.1 4.6 4.4 5.2 
6 9.8 7.8 6.1 7.9 5.3 6.8 6.9 5.2 4.6 6.3 4.8 4.5 5.0 
7 9.8 7.7 6.0 8.0 5.4 7.1 6.8 5.4 4.4 6.3 4.9 4.4 4.9 
8 10.0 7.5 6.1 8.3 5.4 6.6 6.5 5.2 4.2 6.2 4.9 4.4 5.1 
9 10.3 7.8 6.1 8.0 5.3 7.1 6.5 5.4 4.4 6.3 4.8 4.4 4.9 

10 9.7 7.9 6.1 8.2 5.3 6.9 6.8 5.3 4.4 6.5 4.8 4.4 5.1 
11 10.2 7.8 6.2 8.2 5.5 7.0 6.6 5.2 4.3 6.5 4.9 4.5 5.1 
12 10.1 8.0 6.0 8.1 5.3 7.1 6.7 5.2 4.7 6.5 4.7 4.6 5.0 
13 9.6 7.9 6.3 8.4 5.4 7.0 6.6 5.4 4.3 6.4 4.8 4.5 5.0 
14 9.8 7.9 6.2 8.5 5.7 7.0 7.0 5.4 4.3 6.6 4.7 4.5 5.1 
15 9.9 7.7 5.9 8.7 5.4 6.8 6.8 5.4 4.4 6.2 4.8 4.3 5.3 

TABLE 7 
Percentages of occurrence of the ratio 100p/h' where p is 

the largest odd prime dividing h, and h' is the odd portion of h 

(column X is for class numbers h = 2k for some k) 

FOR ODD DISCRI4INANTS 
100 33 20 14 11 9 7 6 5 4 3 2 1 X 

0 40.3 21.0 9.7 4.8 7.8 1.8 1.0 3.3 0.6 2.5 2.5 1.2 1.0 2.4 
1 35.4 19.4 9.9 5.5 8.1 2.4 1.5 4.2 1.2 3.6 3.3 2.2 2.2 1.2 
2 33.8 18.6 9.5 5.7 8.0 2.6 1.7 4.3 1.5 4.1 3.6 2.7 3.0 1.0 
3 32.7 18.2 9.5 5.8 7.8 2.7 1.8 4.4 1.6 4.3 3.8 3.0 3.4 0.9 
4 32.0 17.9 9.4 5.7 7.7 2.8 1.9 4.5 1.7 4.5 4.0 3.2 4.0 0.7 
5 31.4 17.6 9.3 5.6 7.6 2.8 2.0 4.5 1.8 4.6 4.0 3.5 4.5 0.7 
6 30.9 17.3 9.4 5.7 7.6 2.9 2.0 4.5 2.0 4.7 4.1 3.6 4.7 0.6 
7 30.5 17.1 9.2 5.8 7.5 2.9 2.0 4.6 2.0 4.8 4.2 3.8 5.1 0.6 
8 30.4 17.1 9.0 5.7 7.5 3.0 2.0 4.5 2.0 4.8 4.3 3.8 5.3 0.5 
9 30.0 16.8 9.0 5.8 7.4 2.9 2.1 4.6 2.2 4.9 4.3 3.9 5.6 0.5 

10 29.7 16.8 8.8 5.8 7.4 3.0 2.1 4.5 2.1 5.0 4.4 4.0 5.8 0.5 
11 29.3 16.6 9.0 5.7 7.4 3.0 2.1 4.5 2.2 5.0 4.3 4.1 6.1 0.5 
12 29.2 16.5 8.8 5.7 7.3 3.0 2.1 4.6 2.2 5.0 4.4 4.2 6.3 0.5 
13 28.9 16.4 8.8 5.7 7.2 3.0 2.2 4.6 2.3 5.1 4.4 4.3 6.6 0.5 
14 28.9 16.3 8.7 5.7 7.2 3.1 2.2 4.6 2.4 5.0 4.5 4.3 6.6 0.4 
15 28.7 16.2 8.7 5.7 7.2 3.1 2.1 4.6 2.3 5.2 4.5 4.4 6.8 0.4 
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TABLE 7 (continued) 

FOR EVEN DISCRIMINANTS 
100 33 20 14 11 9 7 6 5 4 3 2 1 X 

0 48.5 23.5 8.6 3.1 7.2 0.6 0.2 1.7 0.0 0.6 1.2 0.1 0.1 4.6 
1 41.9 22.5 10.3 4.7 8.8 1.3 0.5 3.1 0.2 1.6 2.1 0.5 0.2 2.4 
2 40.3 21.9 10.3 5.1 8.8 1.6 0.8 3.5 0.3 2.1 2.3 0.8 0.4 1.8 
3 38.4 21.4 10.3 5.4 9.0 1.9 1.0 3.9 0.4 2.4 2.5 1.0 0.6 1.7 
4 37.5 21.2 10.3 5.5 8.7 2.0 1.0 4.0 0.6 2.7 2.8 1.3 0.8 1.4 
5 37.1 20.6 10.3 5.6 8.7 2.1 1.2 4.1 0.6 3.0 3.1 1.4 0.9 1.3 
6 36.4 20.5 10.3 5.8 8.7 2.2 1.2 4.1 0.7 3.2 3.0 1.6 1.1 1.2 
7 35.8 20.0 10.5 5.7 8.7 2.3 1.3 4.3 0.8 3.4 3.2 1.7 1.2 1.2 
8 35.5 20.1 10.2 5.7 8.6 2.4 1.3 4.4 0.9 3.4 3.3 1.9 1.3 1.0 
9 35.2 19.9 10.3 5.6 8.3 2.5 1.4 4.6 0.9 3.5 3.4 2.0 1.5 1.0 

10 34.8 19.9 10.1 5.7 8.6 2.4 1.5 4.4 1.0 3.7 3.5 2.0 1.5 0.9 
11 34.8 19.5 10.1 5.7 8.4 2.5 1.5 4.6 1.0 3.8 3.4 2.1 1.7 1.0 
12 34.3 19.4 9.9 6.0 8.5 2.5 1.6 4.6 1.0 3.8 3.5 2.2 1.7 0.9 
13 34.1 19.1 10.1 6.0 8.8 2.5 1.6 4.5 1.1 3.9 3.5 2.2 1.8 0.8 
14 34.0 18.8 10.0 6.0 8.6 2.6 1.7 4.5 1.1 4.0 3.6 2.4 1.9 0.9 
15 33.5 18.9 9.8 6.0 8.5 2.6 1.7 4.6 1.2 4.0 3.7 2.5 2.1 0.9 

TABLE 8 

Percentages of occurrence of the ratio lOOp/h', where p is 
the largest odd prime dividing h, and h' is the odd portion of h 

(column X is for class numbers h = 2k for some k) 

FOR ODD DISCRIMINANTS WITH 2 GENERA 
100 33 20 14 11 9 7 6 5 4 3 2 1 X 

0 38.4 21.1 10.5 5.5 8.8 1.9 1.0 3.8 0.5 2.6 2.7 1.1 0.6 1.6 
1 32.8 18.5 10.2 6.4 8.2 2.9 1.8 5.0 1.2 4.3 3.8 2.5 1.8 0.6 
2 31.4 17.7 9.4 6.4 7.9 3.1 2.1 4.9 1.7 5.0 4.1 3.0 2.7 0.5 
3 30.2 17.2 9.4 6.3 7.7 3.3 2.2 4.9 1.9 5.3 4.4 3.5 3.3 0.4 
4 29.8 16.7 9.1 5.9 7.7 3.4 2.3 4.9 2.1 5.4 4.4 3.8 4.1 0.3 
5 28.9 16.4 9.1 6.0 7.3 3.3 2.5 5.0 2.2 5.6 4.4 4.1 4.7 0.3 
6 28.2 16.3 9.1 6.0 7.3 3.4 2.6 5.0 2.4 5.5 4.5 4.4 5.0 0.3 
7 28.1 15.8 8.8 6.1 7.2 3.4 2.5 5.0 2.5 5.6 4.7 4.5 5.6 0.3 
8 28.1 15.9 8.7 5.8 7.0 3.5 2.5 4.8 2.5 5.7 4.8 4.6 5.8 0.3 
9 27.4 15.6 8.6 6.1 7.1 3.4 2.6 4.8 2.7 5.7 4.9 4.9 6.1 0.2 

10 27.4 15.6 8.4 6.0 6.9 3.5 2.6 4.7 2.7 5.7 4.9 4.8 6.5 0.2 
11 27.1 15.4 8.5 5.9 7.1 3.3 2.6 4.6 2.9 5.8 4.7 5.0 6.9 0.2 
12 26.9 15.2 8.5 5.8 6.8 3.3 2.5 4.9 2.9 5.8 4.8 5.2 7.2 0.2 
13 26.3 15.3 8.3 5.8 6.9 3.4 2.6 4.9 2.8 5.8 4.9 5.3 7.4 0.2 
14 26.3 15.1 8.3 5.8 6.8 3.5 2.6 4.8 3.0 5.7 5.1 5.2 7.4 0.2 
15 26.5 15.0 8.3 5.8 6.7 3.3 2-.5 4.8 2.8 6.0 4.9 5.4 7.8 0.2 

FOR EVEN DISCRIMINANTS WITH 4 GENERA 
100 33 20 14 11 9 7 6 5 4 3 2 1 X 

0 47.2 23.9 9.7 3.6 8.2 0.4 0.0 1.8 0.0 0.3 1.2 0.0 0.0 3.6 
1 39.2 21.9 11.1 5.9 9.6 1.5 0.5 4.1 0.0 1.7 2.7 0.2 0.1 1.6 
2 37.6 21.2 10.7 6.1 9.3 2.0 0.8 4.6 0.2 2.5 2.9 0.6 0.2 1.2 
3 36.2 20.5 10.6 6.3 9.1 2.6 1.2 4.9 0.3 3.0 3.1 1.0 0.4 0.9 
4 34.8 20.1 10.4 6.4 8.8 2.7 1.4 4.9 0.5 3.7 3.3 1.4 0.6 0.8 
5 34.6 19.4 10.4 6.3 8.9 2.9 1.6 4.8 0.5 3.9 3.7 1.6 0.8 0.6 
6 33.7 19.2 10.1 6.6 8.7 2.9 1.6 5.0 0.6 4.3 3.6 1.9 1.0 0.8 
7 33.0 19.1 10.5 6.2 8.6 3.0 1.8 5.0 0.9 4.4 3.6 2.2 1.1 0.7 
8 32.7 18.8 10.1 6.4 8.5 3.0 1.8 5.1 1.0 4.5 3.9 2.4 1.2 0.6 
9 32.8 18.5 10.2 6.2 8.2 3.2 2.0 5.3 1.1 4.5 3.7 2.5 1.4 0.6 

10 32.2 18.8 9.8 6.0 8.4 3.1 2.0 5.0 1.2 4.7 3.9 2.5 1.6 0.6 
11 31.8 18.4 9.8 6.1 8.3 3.2 2.0 5.3 1.3 4.9 3.9 2.8 1.6 0.5 
12 31.9 18.1 9.6 6.3 8.2 3.2 2.2 5.2 1.3 4.9 4.0 3.0 1.8 0.5 
13 31.5 17.6 10.0 6.4 8.5 3.1 2.3 5.0 1.4 5.0 3.9 2.9 1.8 0.5 
14 31.1 17.6 9.6 6.5 8.4 3.2 2.2 5.1 1.5 5.1 4.1 3.2 2.0 0.4 
15 31.1 17.4 9.7 6.3 8.3 3.2 2.2 5.0 1.6 5.0 4.3 3.4 2.1 0.4 
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TABLE 9 

Actual and Random ratios for FPG values for odd discriminants 

with 2 genera and even discriminants with 4 genera 

between - 15800000 and - 16000000 

ALL ODD 100 33 20 14 11 9 
ACTUAL 26.8 15.0 3.2 5.7 6.6 3.1 
RANDO04 30.1 11.8 7.6 5.5 4.6 3.7 

SUBSET ODD 
ACTUAL 27.4 15.3 8.1 5.8 6.6 5.1 
RANDOi4 32.4 12.6 8.2 6.0 5.1 3.8 

ALL EVEN 
ACTUAL 31.2 17.2 9.5 6.6 9.1 3.1 
RANDOf4 35.6 14.3 9.0 6.3 5.8 3.9 

SUBSET EVEN 
ACTUAL 31.2 17.5 9.6 6.5 8.6 3.1 
RANDOM 37.0 15.2 9.6 6.9 6.0 3.9 

The computation of class numbers and of class groups was performed in a manner 
similar to that of [BUEL76], working with discriminants - N in a range of 200000 at 
a time. All the graphs use these data for blocks of 200000 at a time. To make the 
tables more concise, however, we have collected these original data for blocks of one 
million integers at a time. Except in Table 2, each line in the tables is data on class 
numbers for discriminants in the interval - lOOOOOOn to - 1000000(n + 1). This is 
the "run count" n in the various tables. (In Table 2, each "run count" covers 
discriminants in the interval - 200000n to - 200000(n + 1).) In Table 1, we present 
the largest and smallest values of h and of FPG (the number of forms per genus) in 
each block of one million integers. In each such block there were about 10100 even 
and 20200 odd fundamental discriminants, that is, discriminants of quadratic forms 
which are also discriminants of imaginary quadratic number fields. 

5.1. Noncyclic Class Groups. In Table 2 we present the percentages of noncyclic 
p-Sylow subgroups for small p, remarking as in [BUEL76] that "noncyclic" has a 
special meaning. For odd p, a class group is considered noncyclic if it is indeed 
noncyclic. Some of the structure of the 2-SSG is dictated by the factoring of the 
discriminant into primes, however. The 2-SSG was considered noncyclic if the 
2-SSG of the subgroup of squares in the class group was noncyclic. As can be seen 
from the table, most of the class groups are as cyclic as they can be, although there is 
a small growth in the percentage of noncycic groups. From the point of view of the 
CPS factoring method, this is not a particularly good sign. 

5.2. Divisibility of h by Small Primes. In this and the next subsection, we shall 
consider the empirical evidence to support the assumption of Section 3, that class 
numbers "look like" ordinary integers of corresponding size. One key consideration 
in this assumption and in the practical implementation of the CPS method is the 
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FIGURE 1: Div. of FPG by 2, 3, 5, 7, 11 (all odd discs.) 

divisibility of h by small primes. Leopold observed (cited in [ZIMM72]) that class 
numbers were divisible by small primes p more often than I/p of the time. Canfield, 
Erdos, and Pomerance proved the following [POMEb]: 

Let P(n, v) = 4*{x < n: x is free of primes > v}. Then P(n, nl/r)/n =- rr+o(r), 

provided nl/r , (log n)l +e, e > 0 fixed. 
We present, in Tables 3 through 6, our results on the divisibility of class numbers 

by "small" integers. We table the statistics for all discriminants and for odd 
discriminants - N and even discriminants - 4N for N a product of two primes. To 
illustrate these tables, we present Figures 1 and 2 as sample graphs. We graph the 
expected (straight line) and actual (broken line) values, and observe: 

1. For an odd prime p, p'1 divides h with a frequency of about 

((p + 1)/p2)(1/pn)1 
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FIGURE 2: Div. of FPG by 2, 3, 5, 7, 11 (all even discs.) 

2. Some sort of loose multiplicativity exists. If primes p and q divide h with 
frequencies Fp and Fq, respectively, then pq divides h with frequency about FpFq. 

3. We offer at least the conjecture that an odd prime p divides class numbers with 
a frequency whose main term resembles (p + 1)/p2. 

4. With regard to the difference between even and odd discriminants, it appears 
that class numbers for even discriminants have decidedly more twos in them than do 
class numbers for odd discriminants. This holds for discriminants of comparable 
size, for radicands - N of comparable size (so that the discriminants are - N and 
- 4N), and for class numbers of comparable size. 

5.3. The Size of the Largest Prime Factor Dividing h. In the previous subsection we 
saw that class numbers are more often divisible by small primes than are random 
integers. In this subsection we carry this sort of question one step further. If the CPS 
method is to work in the first stage, the largest prime dividing the class number must 
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FIGURE 3: Ratios 100, 33, 20, 14, 11, 9 (all odd discs.) 

be "small" relative to the size of the class number itself. In Tables 7 and 8 and 
Figures 3 and 4 we display the values of 100 times the ratio of the largest odd prime 
dividing the class number to the odd part of the class number. That is, if the class 
number h = 2kh', with h' odd, this ratio would be 100 if h' were a prime, 33 if it 
were three times a prime, and so forth. (These values were computed as 100p/h' in 
VS FORTRAN integer arithmetic.) At first glance, it seems that the largest prime 
dividing the class number is normally quite large by comparison with the class 
number. This is somewhat deceptive, however, since class numbers are small in this 
range and primes are fairly dense. For example, in the interval 1 to 100, there are 9 
integers such that the ratio of the largest odd prime to the odd portion of the integer 

is 1/5. (These are 25, 35, 55, 65, 85, 95, 50, 70, and 100.) One would then expect 9% 
of "random" integers between 1 and 100 to have ratio 20 in this sort of table. 



A MONTE CARLO FACTORING METHOD 325 

55 

e 50 

r 
C 
e 45 
n 
t 

40 -< 

35 

100 

30 

25 

20 

33 

1is- 

15 

20 
f ~~~~~~~~~~~~~~~~~11 

14 

9 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Run number 

FIGURE 4: Ratios 100, 33, 20, 14, 11, 9 (all even discs.) 

For the discriminants in the range - 15800000 to - 16000000, then, we present a 
closer analysis of these ratios. This is Table 9. We first present the observed and 
expected frequencies of occurrence of the various ratios. Then, based on the 
examination of the distribution of the class numbers, we have taken a subset of these 
data. A graph of the distribution of class numbers for odd discriminants in this 
interval appears as Figure 5. It shows that class numbers are not evenly distributed, 
but obey some sort of gamma-distribution [MOOD]. We have, therefore, taken as a 
subset those class numbers which lie within one standard deviation of the mean, and 
presented the observed and expected frequencies of occurrence of the ratios. The 
data in the table are inconclusive. Although ratios are more often 100 in the subset 
than random, no other patterns seem marked enough to allow for inferences to be 
made. The evidence about divisibility seems convincing; this is not the case for the 
data on ratios. 
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FIGURE 5: FPG frequencies, odd discs. with 2 genera 

6. Summary/Conclusions. An appealing new factoring method has been pro- 
posed that relies for its effectiveness on the expectation that class numbers of 
imaginary quadratic fields are at least as composite as random integers of compara- 
ble size. A study of actual class numbers seems to indicate that they may actually be 
more composite than random. The data indicate that efforts should be made to 
overcome some serious implementation problems with this new method. 

7. Acknowledgement. All computing mentioned in this paper was done on the 
IBM 3033N computer at the System Network Computing Center, Louisiana State 
University, Baton Rouge, Louisiana. 

Computer Science Department 
Louisiana State University 
Baton Rouge, Louisiana 70803 



A MONTE CARLO FACTORING METHOD 327 

[BRIL] JOHN BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN & S. S. WAGSTAFF, JR., 
Factorizations of bn + 1, b = 2, 3, 5, 6, 7, 10, 11, 12, up to High Powers, Contemporary Math., Vol. 22, 
Amer. Math. Soc., Providence, R. I., 1983. 

[BUEL76] DUNCAN A. BUELL, "Class groups of quadratic fields," Math. Comp., v. 30, 1976, pp. 
610-623. 

[KNUT] DONALD KNUTH, The Art of Computer Programming, 2nd ed., Vol. 2, Addison-Wesley, 
Reading, Mass., 1981, p. 323. 

[MOOD] ALEXANDER M. MOOD & FRANKLIN A. GRAYBILL, Introduction to the Theory of Statistics, 2nd 
ed., McGraw-Hill, New York, 1963, pp. 126-129. 

[POMEa] CARL POMERANCE, private communication. 
[POMEb] CARL POMERANCE, "Analysis and comparison of some integer factoring methods," Computa- 

tionial Methods in Number Theory (H. W. Lenstra, Jr., R. Tijdeman, eds.), Math. Centrum, Amsterdam, 
1982. 

[POMEc] CARL POMERANCE & SAMUEL S. WAGSTAFF, JR., "Implementation of the continued fraction 
integer factoring algorithm." (To appear.) 

[SCHN] C. P. SCHNORR & H. W. LENSTRA, JR., "A Monte Carlo factoring algorithm with finite 
storage." (To appear.) (Extended abstract appears in Lecture Notes in Comput. Sci., Vol. 145, Springer- 
Verlag, New York, pp. 19-34.) 

[SHAN] DANIEL SHANKS, Class Number, A Theory of Factorization, and Genera, Proc. Sympos. Pure 
Math., Vol. 20, Amer. Math. Soc., Providence, R. I., 1971, pp. 415-440. 

[ZIMM72] H. G. ZIMMER, Computational Problems, Methods, and Results in Algebraic Number Theor, 
Lecture Notes in Math., Vol. 262, Springer-Verlag, New York, 1972. 


